Area of coronas and a Zeta funtion
A=\frac{\pi}{2}\; \sum_{\mathbf f\in \mathbb Z^2_o} \frac{1}{\left(\|\mathbf M\mathbf f \|^2 - B\right)^2}
where \mathbf a and \mathbf b are two adjacent spionors in a corona, \mathbf M= [\mathbf a|\mathbf b], and B=\pm \,\mathbf a\times \mathbf b.
The figure below shows spinors around the disk of curvature B=23 in the Apollonian Window. Initial spins may be chosen \mathbf a = [1,\, 5] and \mathbf b = [3, -4].
No comments:
Post a Comment