Area of coronas and a Zeta funtion
$$A=\frac{\pi}{2}\; \sum_{\mathbf f\in \mathbb Z^2_o} \frac{1}{\left(\|\mathbf M\mathbf f \|^2 - B\right)^2}$$
where $\mathbf a$ and $\mathbf b$ are two adjacent spionors in a corona, $\mathbf M= [\mathbf a|\mathbf b]$, and $B=\pm \,\mathbf a\times \mathbf b$.
The figure below shows spinors around the disk of curvature $B=23$ in the Apollonian Window. Initial spins may be chosen $\mathbf a = [1,\, 5]$ and $\mathbf b = [3, -4]$.